Die Bernoullische Ungleichung

Die Bernoullische Ungleichung (nach Johann Bernoulli) lautet:

$$(1+a)^n > 1+an$$
 für jedes $a \in R > -1$ und jedes $n \in N \ge 2$

Beweis

Die Bernoullische Ungleichung beweist man mittels vollständiger Induktion:

1. Induktionsbeginn: Für n=2 gilt offensichtlich:

$$(1+a)^2 = 1 + 2a + a^2 > 1 + 2a$$

2. Induktionsschritt: wenn $(1+a)^n > 1+an$ für ein bestimmtes n gilt, gilt es auch für n+1. Dazu multiplizieren wir beide Seiten der Ungleichung mit (1+a):)¹

$$(1+a)^n > 1+an$$

 $(1+a)^n \cdot (1+a) > (1+na)(1+a)$
 $(1+a)^{n+1} > 1+a+na+na^2$

Da nun offensichtlich

$$1 + a + na + na^2 > 1 + a + na$$

gilt, kann man auch folgern:

$$(1+a)^{n+1} > 1+a+na$$

 $(1+a)^{n+1} > 1+a(n+1)$

Damit ist die Ungleichung bewiesen

 $^{^1\}mathrm{Dies}$ gilt nur, wenn 1+a>0 gilt, was durch a>-1 gegeben ist. Zur Erinnerung: Multipliziert man beide Seiten einer Ungleichung mit einem negativen Wert, so muss man das Ungleichungszeichen "umdrehen"